ПРОДУКЦИЯ

НИХРОМ

ФЕХРАЛЬ

НИХРОМ В ИЗОЛЯЦИИ

ТИТАН

ВОЛЬФРАМ

МОЛИБДЕН

КОБАЛЬТ

ТЕРМОПАРЫ

ТЕРМОПАРЫ НАГРЕВОСТОЙКИЕ

НИКЕЛЬ

МОНЕЛЬ

КОНСТАНТАН

МЕЛЬХИОР

ТВЕРДЫЕ СПЛАВЫ

ПОРОШКИ МЕТАЛЛОВ

НЕРЖАВЕЮЩАЯ СТАЛЬ

ЖАРОПРОЧНЫЕ СПЛАВЫ

ФЕРРОСПЛАВЫ

ОЛОВО

ТАНТАЛ

НИОБИЙ

ВАНАДИЙ

ХРОМ

РЕНИЙ

ПРЕЦИЗИОННЫЕ СПЛАВЫ

ЦИРКОНИЙ


 
Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.

 

8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95
logo
(800) 200-52-75
(495) 366-00-24
(495) 504-95-54

Титан и тантал в медицине

В статье проводится сравнение свойств, применений и других особенностей тантала и титана в контексте медицинского использования этих металлов.

На странице представлена только выдержка из статьи "Титан и тантал в медицине".

Введение

Титан и тантал – «компромиссные» металлы для медицины
Использование в медицине различных металлоизделий практикуется издревле. Сочетание таких полезных свойств металлов и их сплавов, как прочность, долговечность, гибкость, пластичность, упругость, не имеет альтернатив, в частности, при изготовлении ортопедических конструкций, медицинского инструментария, приспособлений для скорейшего сращивания переломов. А в последние десятилетия, благодаря открытию эффекта «памяти формы» и внедрению прочих инноваций металлы стали широко применяться также в сосудистой и нейрохирургии для изготовления шовного материала, сетчатых стентов для расширения вен и артерий, крупных эндопротезов, в офтальмологической и стоматологической имплантологии.

Однако далеко не все металлы пригодны для применения в медицинской сфере, и главными деструктивными причинами здесь выступают подверженность коррозии и вступление в реакцию с живыми тканями – факторы, имеющие разрушительные последствия, как для металла, так и для самого организма.

Конечно, вне конкуренции стоят золото и металлы платиновой группы (платина, иридий, осмий, палладий, родий и т.п.). Тем не менее, возможность использования драгметаллов для массового применения практически отсутствует ввиду их запредельно высокой стоимости, да и сочетание полезных свойств, востребованных в тех или иных конкретных клинических ситуациях, присуще благородным металлам далеко не всегда.

Значительное место в этой сфере по сегодняшний день занимают нержавеющие стали, легированные определенными добавками для получения требуемых характеристик. Но подобные металломатериалы, которые в сотни раз дешевле драгметаллов, недостаточно эффективно противостоят коррозии и другим агрессивным воздействиям, что значительно ограничивает возможность их применения для целого ряда медицинских нужд. Кроме того, препятствием для приживления изделий из нержавеющих сталей, имплантируемых внутрь организма, является их, конфликт с живыми тканями, обуславливающий высокий риск отторжения и других осложнений.

Своеобразным компромиссом между этими двумя полюсами являются такие металлы, как титан и тантал: прочные, ковкие, почти не подверженные коррозии, имеющие высокую температуру плавления, а главное – совершенно нейтральные в биологическом отношении, за счет чего воспринимаются организмом как собственная ткань и практически не вызывают отторжения. Что же касается стоимости, то у титана она не высока, хотя и значительно превосходит аналогичный параметр нержавеющих сталей. Тантал же, будучи достаточно редким металлом, более чем вдесятеро дороже титана, но все равно обходится намного дешевле в сравнении с драгоценными металлами. При сходстве большинства основных эксплуатационных свойств по некоторым из них он все же уступает титану, хотя по некоторым превосходит его, что, собственно, и обуславливает актуальность применения.

Именно в силу данных причин титан и тантал, нередко именуемые «медицинскими металлами», а также ряд их сплавов, получили широчайшее распространение во многих врачебных отраслях. Различаясь по ряду характеристик и, тем самым, взаимно дополняя друг друга, они раскрывают перед современной медициной воистину необъятные перспективы.

Ниже будет более подробно рассказано об уникальных характеристиках титана и тантала, основных сферах их использования в медицине, применении различных форм выпуска данных металлов для изготовления инструментов, ортопедического и хирургического оборудования.

Титан и тантал – определение, актуальные свойства

Титан для медицины

Определение и полезные характеристики
Титан (Ti) – легкий металл серебристого оттенка, внешне напоминающий сталь – является одним из химических элементов Периодической таблицы, размещенным в четвертой группе четвертого периода, атомный № 22 (рис. 1).

Титановый самородок

Рисунок 1. Титановый самородок.

Имеет атомную массу 47,88 при удельной плотности 4,52 г/см3. Температура плавления – 1669°С, температура кипения –3263 °С. В промышленных марках с высокой устойчивостью является четырехвалентным. Характеризуется хорошей пластичностью и ковкостью.

Будучи одновременно легким и обладая высокой механической прочностью, вдвое превышающей аналогичный показатель Fe и вшестеро – Al, титан также имеет низкий коэффициент теплового расширения, что позволяет применять его в широком температурном диапазоне.

Титан характеризуется низким показателем теплопроводности, вчетверо меньшим по сравнению с железом и более чем на порядок меньшем, чем у алюминия. Коэффициент терморасширения при 20°С относительно невелик, но увеличивается по мере дальнейшего нагревания.

Отличается данный материал и весьма высоким показателем удельного электросопротивления, который, в зависимости от наличия посторонних элементов, может варьироваться в диапазоне 42·11-8...80·11-6 Ом·см.

Титан относится к парамагнитным металлам, имея невысокий показатель электропроводности. И хотя у парамагнитных металлов магнитовосприимчивость, как правило, уменьшается по мере разогревания, титан в данном отношении можно отнести к разряду исключений, поскольку его магнитовосприимчивость, напротив, возрастает с увеличением температуры.

За счет суммы вышеперечисленных свойств титан совершенно незаменим в качестве исходного сырья для различных областей практической медицины и медицинского приборостроения. И все же самым ценным качеством титана для использования с этой целью является его высочайшая устойчивость к коррозионным воздействиям, и, как следствие, гипоаллергенность.

Своей коррозионной стойкостью титан обязан тому, что при температурах вплоть до 530-560 °С поверхность металла покрыта прочнейшей естественной защитной пленкой оксида TiO2, совершенно нейтральной по отношению к агрессивным химико-биологическим средам. В отношении устойчивости к коррозии титан сравним с платиной и металлами-платиноидами, и даже превосходит эти благородные металлы. В частности, он исключительно устойчив к воздействию кислото-щелочных сред, не растворяясь даже в столь агрессивном «коктейле», как царская водка. Достаточно отметить, что интенсивность коррозионного разрушения титана в морской воде, имеющей химсостав во многом сходный с человеческой лимфой, не превышает 0,00003 мм/год или 0,03 мм в течение тысячелетия!

Благодаря биологической инертности титановых конструкций к организму человека, при имплантации они не отторгаются и не провоцируют аллергических реакций, быстро обтягиваясь костно-мышечными тканями, структура которых остается постоянной на протяжении всей последующей жизни.

Существенным преимуществом титана является и его ценовая доступность, обуславливающая возможность массового применения.

Марки титана и титановые сплавы
Наиболее востребованными медициной марками титана являются технически чистые ВТ1-0, ВТ1-00, ВТ1-00св. В них почти не присутствуют примеси, количество которых столь незначительно, что колеблется в пределах нулевой погрешности. Так, в марке ВТ1-0 содержится около 99,35-99,75% чистого металла, а в марках ВТ1-00 и ВТ1-00св, соответственно, – 99,62-99,92% и 99,41-99,93%.

На сегодняшний день в медицине используется широкий спектр титановых сплавов, различных по своему химсоставу, и механотехнологическим параметрам. В качестве легирующих добавок в них чаще всего используются Та, Al, V, Mo, Mg, Cr, Si, Sn. К наиболее эффективным стабилизаторам можно причислить Zr, Au и металлы платиновой группы. При введении в титан до 12% Zr его коррозиестойкость увеличивается на порядки. Достичь же наибольшего эффекта удается при добавлении в титан небольшого количества Pt и платиноидов Pd, Rh, Ru. Введение в Ti лишь 0,25% данных элементов позволяет на десятки порядков уменьшить активность его взаимодействия с кипящими концентрированными H2SO4 и HCl.

Широкое распространение в имплантологии, ортопедии и хирургии получил сплав Ti-6Al-4V, значительно превосходящий по эксплуатационным параметрам «конкурентов» на базисе кобальта и нержавеющих сталей. В частности, модуль упругости у титановых сплавов в два раза ниже. Для медицинского применения (имплантаты для остеосинтеза, эндопротезы суставов и т.д.) это является большим преимуществом, так как обеспечивает более высокую механосовместимость имплантата с плотными костными структурами организма, у которых модуль упругости составляет 5¸20 Гпа. Еще более низкими показателями в этом отношении (до 40 ГПа и ниже) характеризуются титано-ниобиевые сплавы, разработка и внедрение которых особенно актуальны. Однако прогресс не стоит на месте, и сегодня на смену традиционному Ti-6Al-4V приходят новые медицинские сплавы Ti-6Al-7Nb, Ti-13Nb-13Zr и Ti-12Mo-6Zr, не содержащие алюминия и ванадия – элементов, оказывающих хотя и незначительное, но все же токсичное воздействие на живые ткани.

В последнее время все более востребованными для медицинских нужд становятся биомеханически совместимые имплантаты, материалом для изготовления которых служит никелид титана TiNi. Причиной роста популярности данного сплава является присущий ему т. наз. эффект запоминания формы (ЭЗФ). Его сущность состоит в том, что контрольный образец, будучи деформированным при пониженных температурах, способен постоянно сохранять вновь обретенные очертания, а при последующем нагревании – восстанавливать изначальную конфигурацию, демонстрируя при этом сверхупругость. Никелид-титановые конструкции незаменимы, в частности, при лечении позвоночных травм и дистрофии опорно-двигательного аппарата.

Тантал для медицины

Определение и полезные характеристики
Тантал (Ta, лат. Tantalum) – тяжелый тугоплавкий металл серебристо-голубоватого «свинцового» оттенка, которому обязан покрывающей его пленке пентаоксида Ta2O5. Является одним из химических элементов Периодической таблицы, размещенным в побочной подгруппе пятой группы шестого периода, атомный № 73 (рис. 2).

Кристаллы тантала

Рисунок 2. Кристаллы тантала.

Тантал имеет атомную массу 180,94 при высокой удельной плотности 16,65 г/см3 при 20 °C (для сравнения: удельная плотность Fe – 7,87 г/см3, Рв – 11,34 г/см3). Температура плавления – 3017 °С (более тугоплавкими являются только W и Re). 1669°С, температура кипения – 5458 °С. Тантал характеризуется свойством парамагнитности: его удельная магнитовосприимчивость при комнатной температуре составляет 0,849·10-6.

Данный конструкционный материал, сочетая в себе высокие показатели твердости и пластичности, в чистом виде хорошо поддается механообработке любыми способами (штамповка, прокатка, ковка, протяжка, скручивание, резание, и т. д.). При низких температурах обрабатывается без сильного наклепа, подвергаясь деформационным воздействиям (ст. сжатия 98,8%) и не нуждаясь при этом в предварительном обжиге. Тантал не утрачивает пластичности даже в случае его заморозки до –198 °C.

Значение модуля упругости тантала составляет 190 Гн/м2 или 190·102 кгс/мм2 при 25 °С, благодаря чему он легко перерабатывается в проволоку. Осуществляется также выпуск тончайшего танталового листа (толщина примерно 0,039 мм) и других конструкционных полуфабрикатов.

Своеобразным «двойником» Та является Nb, характеризуемый множеством схожих свойств.

Тантал отличает исключительная стойкость к агрессивным средам. Это является одним из ценнейших его свойств для применения во множестве отраслей, включая медицинскую. Он устойчив к воздействию таких неорганических агрессивных кислот, как HNO3, H2SO4, HCl, H3PO4, а также органических кислот любых концентраций. По данному параметру его превосходят лишь благородные металлы, да и то не во всех случаях. Так, Та, в отличие от Au, Pt и многих других драгметаллов, «игнорирует» даже царскую водку HNO3+3HCl. Несколько меньшая устойчивость тантала наблюдается по отношению к щелочам.

Высокая коррозиестойкость Та проявляется и по отношению к атмосферному кислороду. Процесс окисления начинается только при 285 °С: на металле формируется поверхностная защитная плёнка пентаоксида тантала Ta2O5. Именно наличие пленки из этого единственно стабильного из всех окислов Та делает металл невосприимчивым к агрессивным реагентам. Отсюда – такая особенно ценная для медицины характеристика тантала, как высокая биосовместимость с организмом человека, воспринимающим вживляемые в него танталовые конструкции как собственную ткань, без отторжения. На этом ценнейшем качестве основано медицинское использование Та в таких сферах, как восстановительная хирургия, ортопедия, имплантология.

Тантал входит в число редких металлов: его запасы в земной коре составляют примерно 0,0002%. Это обуславливает высокую стоимость данного конструкционного материала. Вот почему столь распространено применение тантала в виде наносимых на основной металл тонких пленок защитных антикоррозийных покрытий, имеющих, кстати, в три-четыре раза большую твердость, чем чистый отожженный тантал.

Еще чаще тантал используется в виде сплавов как легирующую добавку в менее дорогостоящие металлы для придания получаемым соединениям комплекса необходимых физико-механических и химсвойств. Стальные, титановые и другие металлические сплавы с добавлением тантала широко востребованы в химико-медицинском приборостроении. Из них, в частности, практикуют изготовление змеевиков, дистилляторов, аэраторов, рентгеновской аппаратуры, устройств контроля и т.д. В медицине тантал и его соединения применяют также с целью изготовления оборудования для операционных.

Примечательно, что в ряде областей тантал, как менее дорогостоящий, но имеющий множество адекватных эксплуатационных характеристик, способен успешно заменять драгметаллы платиноиридиевой группы.

Марки тантала и его сплавы
Основными марками нелегированного титана с содержанием примесей в пределах статистической погрешности являются:

  • ТВЧ: Ta - 99,9%, (Nb) - 0,2%. Прочие примеси, такие как (Ti), (Al), (Co), (Ni), содержатся в тысячных и десятитысячных долях процента.
  • ТВЧ 1: Химический состав указанной марки на 99,9% состоит из Ta. Ниобию (Nb), который всегда присутствует в промышленном тантале, соответствует всего 0,03%.
  • ТЧ: Та – 99,8%. Примеси (не более %): Nb — 0,1%, Fe — 0,005%, Ti, H — по 0,001%, Si — 0,003%, W+Mo, O — по 0,015%, Co — 0,0001%, Ca — 0,002%, Na, Mg, Mn — по 0,0003%, Ni, Zr, Sn — по 0,0005%, Al — 0,0008%, Cu, Cr — по 0,0006%, C, N — по 0,01%.
  • Т: Та – 99,37%, Nb – 0,5%, W – 0,05%, Mo – 0,03%, (Fe) - 0,03%; (Ti) - 0,01%, (Si) - 0,005%.

Высокие показатели твердости Ta позволяют изготавливать на его основе конструкционные твердые сплавы, например, Ta с W (ТВ). Замена сплава TiС танталовым аналогом TaС существенно оптимизирует механические характеристики конструкционного материала и расширяет возможности его применения.

Актуальность применения Та в медицинских целях
На медицинские нужды расходуется примерно 5% производимого в мире тантала. Несмотря на это, значимость его использования в данной отрасли трудно переоценить.

Как уже отмечалось, тантал является одним из лучших металлических биоинертных материалов благодаря самообразующейся на его поверхности тончайшей, но очень прочной и химически стойкой пленки пентаоксида Та2О5. Благодаря высоким показателям адгезии, облегчающей и ускоряющей процесс сращивания имплантата с живой тканью, наблюдается низкий процент отторжения танталовых имплантатов и отсутствие воспалительных реакций.

Из таких танталовых полуфабрикатов, как лист, пруток, проволока и прочие формы выпуска, изготавливают конструкции, востребованные в пластической, кардио-, нейро- и остеохирургии для наложения швов, сращивания костных обломков, стентирования и клипирования сосудов (рис. 3).

Танталовая крепежная конструкция в плечевом суставе

Рисунок 3. Танталовая крепежная конструкция в плечевом суставе.

Применение тонких танталовых пластинчатых и сетчатых конструкций практикуется в челюстно-лицевой хирургии и для лечения черепно-мозговых травм. Волокнами танталовой пряжи замещают ткань мышц и сухожилий. С помощью тантала Хирурги используют танталовое волокно при полостных операциях, в частности, с целью укрепления стенок брюшной полости. Танталовые сетки незаменимы в сфере офтальмопротезирования. Тончайшие танталовые нити используют даже для регенерации нервных стволов.

И, конечно, Та и его соединения, наряду с Ti, повсеместно применяют в ортопедии и имплантологии для изготовления суставных эндопротезов и стоматологического протезирования.

С начала нового тысячелетия обретает все более широкую популярность инновационная сфера медицины, в основу которой заложен принцип использования статических электрополей для активизации в человеческом организме желательных биопроцессов. Научно доказано наличие высоких электретных свойств покрытия из пентаоксида тантала Та2О5. Титанооксидные электретные пленки ужа получили распространение в сосудистой хирургии, эндопротезировании, создании медицинских инструментов и приборов.

Практическое применение титана и тантала в конкретных отраслях медицины

Травматология: конструкции для сращивания переломов

В настоящее время для скорейшего сращивания переломов все чаще применяют такую инновационную технологию, как металлический остеосинтез. С целью обеспечить стабильное положение костных осколков используют различные фиксирующие конструкции, как наружные, так и внутренние, имплантируемые в тело. Однако применяемые ранее стальные изделия показывают невысокую эффективность ввиду их подверженности коррозии под воздействием агрессивной среды организма и явления гальванизации. В результате наступает как быстрое разрушение самих фиксаторов, так и реакция отторжения, вызывающая воспалительные процессы на фоне сильных болевых ощущений вследствие активного взаимодействия ионов Fe с физиологической средой костно-мышечных тканей в электрическом поле организма.

Избежать нежелательных последствий позволяет изготовление титановых и танталовых фиксаторов-имплантатов, обладающих свойством биосовместимости с живыми тканями (рис. 4).

Титановые и танталовые конструкции для остеосинтеза

Рисунок 4. Титановые и танталовые конструкции для остеосинтеза.

Подобные конструкции простых и сложных конфигураций могут быть использованы для продолжительного или даже постоянного внедрения в организм человека. Это особенно важно для пожилых пациентов, поскольку избавляет их от необходимости операции по удалению фиксатора.

Эндопротезирование

Искусственные механизмы, имплантируемые хирургическим путем в костную ткань, называются эндопротезами. Наибольшее распространение получило эндопротезирование суставов – тазобедренного, плечевого, локтевого, коленного, голеностопного и т.д. Процесс эндопротезирования всегда представляет собой сложную операцию, когда часть не подлежащего естественному восстановлению сустава удаляется с последующей ее заменой на имплантат-эндопротез.

К металлическим компонентам эндопротезов предъявляется ряд серьезных требований. Они должны одновременно обладать свойствами жесткости, прочности, эластичности, возможностью создания необходимой поверхностной структуры, стойкостью к коррозионным воздействиям со стороны организма, исключающей риск отторжения, другими полезными качествами.

Для изготовления эндопротезов могут быть использованы различные биоинертные металлы. Ведущее место среди них занимают титан, тантал и их сплавы. Эти долговечные, прочные и удобные в обработке материалы обеспечивают эффективную остеоинтеграцию (воспринимаются костной тканью как естественные ткани организма и не вызывают с его стороны негативных реакций) и быстрое срастание костей, гарантируя стабильность протеза на длительные сроки, исчисляемые десятилетиями. На рис. 5 представлено применение титана в артропластике бедра.

Титановые и танталовые конструкции для остеосинтеза

Рисунок 5. Титановый эндопротез тазобедренного сустава.

При эндопротезировании как альтернативу использованию цельнометаллических конструкций широко используют метод плазменного напыления на поверхность неметаллических компонентов протеза защитных биосовместимых покрытий на основе оксидов Ti и Та.

Чистый титан и его сплавы. В сфере эндопротезирования находят широкое применение как чистый Ti (напр. CP-Ti с содержанием Ti 98,2-99,7 %), так и его сплавы. Наиболее распространенный из них Ti-6AI-4V при высоких показателях прочности, характеризуется коррозиестойкостью и биологической инертностью. Сплав Ti-6A1-4V отличается особенно высокой механопрочностью, имея торсионно-аксиальные характеристики, предельно близкие к аналогичным параметрам кости.

К настоящему времени разработан целый ряд современных титановых сплавов. Так, в химическом составе сплавав Ti-5AI-2,5Fe и Ti-6AI-17 Niobium не содержится токсичный V, кроме того, они отличаются низким значением модуля упругости. А сплаву Ti-Ta30 присуще наличие модуля терморасширения, сопоставимого с аналогичным показателем металлокерамики, что обуславливает его устойчивость при длительном взаимодействии с металлокерамическими компонентами имплантата.

Тантало-циркониевые сплавы. В сплавах Та+Zr совмещаются такие важнейшие для эндопротезирования свойства, как биосовместимость с тканями организма на основе коррозионной и гальванической стойкости, поверхностная жесткость и трабекулярная (пористая) структура металлической поверхности. Именно благодаря свойству трабекулярности возможно значительное ускорение процесса остеоинтеграции – наращивания на металлической поверхности имплантата живой костной ткани.

Эластичные эндопротезы из проволочной титановой сетки. Благодаря высокой пластичности и легкости в современной восстановительной хирургии, других медицинских отраслях активно используются инновационные эластичные эндопротезы в виде тончайшей проволочной титановой сетки-«паутины». Упругая, прочная, эластичная, долговечная и сохраняющая свойство биоинертности, сетка является идеальным материалом для эндопротезов мягких тканей (рис. 6).

Титановые и танталовые конструкции для остеосинтеза

Рисунок 6. Сетчатый эндопротез из титанового сплава для пластики мягких тканей.

«Паутину» уже успешно опробовали в таких сферах, как гинекология, челюстно-лицевая хирургия и травматология. По мнению специалистов, сетчатые титановые эндопротезы не знают себе равных в плане стабильности при практически нулевом риске побочных проявлений.

Титано-никелевые медицинские сплавы с эффектом запоминания формы

Сегодня в различных сферах медицины находят широкое распространение сплавы из никелида титана, имеющие т. наз. с эффект запоминания формы (ЭЗФ). Данный материал применяют для эндопротезирования связочно-хрящевой ткани опорно-двигательного аппарата человека.

Никелид титана (международный термин нитинол) представляет собой интерметаллид TiNi, который получают путем сплавления в равных пропорциях Ti и Ni. Важнейшей характеристикой никелид-титановых сплавов является свойство сверхупругости, на котором и базируется ЭЗФ.

Сущность эффекта состоит в том, что образец при охлаждении в определенном диапазоне температур легко деформируется, причем деформация самоустраняется при повышении температуры до первоначального значения с возникновением сверхупругих свойств. Другими словами, если пластину из сплава нитинол изогнуть при пониженной температуре, то в этом же температурном режиме она будет сохранять свою новую форму сколь угодно долго. Однако стоит лишь повысить температуру до исходной, пластина вновь выпрямится подобно пружине и обретет первоначальную форму.

Образцы продукции медицинского назначения из сплава нитинол показаны на представленных ниже рис. 7, 8, 9, 10.

Набор имплантатов из никелида титана для травматологии (в виде скоб, скреп, фиксаторов и т.д.)

Рисунок 7. Набор имплантатов из никелида титана для травматологии (в виде скоб, скреп, фиксаторов и т.д.).

Набор имплантатов из никелида титана для хирургии ( в виде зажимов, дилататоров, хирургического инструментария)

Рисунок 8. Набор имплантатов из никелида титана для хирургии ( в виде зажимов, дилататоров, хирургического инструментария).

Образцы пористых материалов и имплантатов из никелида титана для вертебрологии (в виде эндопротезов, изделий пластинчатой и цилиндрической конфигурации)

Рисунок 9. Образцы пористых материалов и имплантатов из никелида титана для вертебрологии (в виде эндопротезов, изделий пластинчатой и цилиндрической конфигурации).

Материалы и эндопротезы из никелида титана для челюстно-лицевой хирургии и стоматологии

Рисунок 10. Материалы и эндопротезы из никелида титана для челюстно-лицевой хирургии и стоматологии.

Помимо этого, никелид-титановые сплавы, как и большинство изделий на титановой основе, биоинертны вследствие высокой коррозие- и гальваностойкости. Таким образом, это идеальный по отношению к организму человека материал для изготовления биомеханически совместимых имплантатов (БМСИ).

Применение Ti и Та для изготовления сосудистых стентов

Стентами (от англ. stent) — в медицине называют специальные, имеющие вид упругих сетчатых цилиндрических каркасов, металлоконструкции, помещаемые внутрь крупных сосудов (вен и артерий), а также прочих полых органов (пищевод, кишечник, желче- мочевыводящие протоки и др.) на патологически суженных участках с целью их расширения до необходимых параметров и восстановления проходимости.

Наиболее востребовано применение метода стентирования в такой сфере, как сосудистая хирургия, и, в частности, коронарная ангиопластика (рис. 11).

Образцы титановых и танталовых сосудистых стентов

Рисунок 11. Образцы титановых и танталовых сосудистых стентов.

На сегодняшний день научно разработаны и внедрены в реальную практику сосудистые стенты более чем полутысячи различных типов и конструкций. Они различаются между собой по составу исходного сплава, длине, конфигурации отверстий, виду поверхностного покрытия, другим рабочим параметрам.

Требования, предъявляемые к сосудистым стентам, призваны обеспечить их безупречную функциональность, а потому многообразны и весьма высоки.

Данные изделия должны быть:

  • биосовместимыми с тканями организма;
  • гибкими;
  • эластичными;
  • прочными;
  • рентгеноконстрастыми и т.д.

Основными материалами, используемыми сегодня при изготовлении металлостентов являются композиции благородных металлов, а также Та, Ti и его сплавы (ВТ6С, ВТ8, ВТ 14, ВТ23, нитинол), полностью биоинтегрируемые с тканями организма и сочетающие в себе комплекс всех прочих необходимых физико-механических свойств.

Сшивание костей, сосудов и нервных волокон

Периферические нервные стволы, поврежденные в результате различных механических травм или осложнений тех или иных заболеваний, нуждаются для восстановления в серьезном хирургическом вмешательстве. Положение усугубляется тем, что обычно подобные патологии наблюдаются на фоне травмирования сопутствующих органов, таких, как кости, сосуды, мышцы, сухожилия и др. В этом случае разрабатывается комплексная программа лечения с наложением специфических швов. В качестве же исходного сырья для изготовления шовного материала – нитей, скреп, фиксаторов и т.д. – используются титан, тантал и их сплавы, как металлы, обладающие химической биосовместимостью и всем комплексом необходимых физикомеханических свойств.

На представленных ниже рисунках изображены примеры подобных операций.

Сшивание кости титановыми скрепами

Рисунок 12. Сшивание кости титановыми скрепами.

Сшивание пучка нервных волокон с применением тончайших танталовых нитей

Рисунок 13. Сшивание пучка нервных волокон с применением тончайших танталовых нитей.

Сшивание сосудов с применением танталовых скрепок

Рисунок 14. Сшивание сосудов с применением танталовых скрепок.

В настоящее время разрабатываются все более совершенные технологии нейро- остео- и вазопластики, однако применяемые для этого титано-танталовые материалы продолжают удерживать пальму первенства перед всеми прочими.

Пластическая хирургия

Пластической хирургией называют устранение хирургическим путем дефектов органов с целью воссоздания их идеальных анатомических пропорций. Часто при этом подобные реконструкции выполняются с использованием имплантируемых в ткани различных металлических изделий в виде пластин, сеток, пружин и т.д.

Особенно показательна в данном отношении краниопластика – операция по исправлению деформации черепа. В зависимости от показаний в каждой конкретной клинической ситуации краниопластика может выполняться посредством наложения на оперируемый участок жестких титановых пластин или эластичных сеток из тантала. В обоих случаях допускается применение как чистых металлов без легирующих добавок, так и их биоинертных сплавов. Примеры краниопластики с применением титановой пластины и танталовой сетки представлены на приведенных ниже рисунках.

Краниопластика с использованием титановой пластины

Рисунок 15. Краниопластика с использованием титановой пластины.

Краниопластика с применением танталовой сетки

Рисунок 16. Краниопластика с применением танталовой сетки.

Титано-танталовые конструкции могут применяться также при косметическом восстановлении лица, груди, ягодиц и многих других органов.

Нейрохирургия (наложение микроклипсов)

Клипированием (англ. clip зажим) называется нейрохирургическая операция на сосудах головного мозга, имеющая целью остановить кровотечение (в частности, при разрыве аневризмы) либо выключить из кровообращения травмированные мелкие сосуды. Сущность метода клипирования заключается в том, что на поврежденные участки накладываются миниатюрные металлические зажимы — клипсы.

Востребованность метода клипирования, прежде всего, в нейрохирургической сфере объясняется невозможность перевязывания мелких мозговых сосудов традиционными способами.

В связи с разнообразием и спецификой возникающих клинических ситуаций, в нейрохирургической практике используется обширная номенклатура сосудистых клипсов, различающихся по конкретному назначению, способу фиксации, размерным и другим функциональным параметрам (рис. 17).

Клипсы для выключения аневризм головного мозга

Рисунок 17. Клипсы для выключения аневризм головного мозга.

На фотографиях клипсы кажутся крупными, на самом же деле по размерам они не больше ноготка ребенка и устанавливаются под микроскопом (рис. 18).

Операция по клипированию аневризмы сосуда головного мозга

Рисунок 18. Операция по клипированию аневризмы сосуда головного мозга.

Для изготовления клипсов, как правило, используют плоскую проволоку из чистого титана или тантала, в некоторых случаях из серебра. Такие изделия абсолютно инертны по отношению к мозговому веществу, не вызывая реакций противодействия.

Стоматологическая ортопедия

Широкое медицинское применение титан, тантал и их сплавы нашли в стоматологии, а именно в сфере протезирования зубов.

Ротовая полость – особенно агрессивная среда, негативно воздействующая на металлические материалы. Даже такие традиционно используемые при дентальном протезировании драгметаллы, такие как золото и платина, в ротовой полости не могут совершенно противостоять коррозии и последующему отторжению, не говоря уже о высокой стоимости и большой массе, вызывающей дискомфорт у пациентов. С другой стороны, легкие ортопедические конструкции из акриловой пластмассы также не выдерживают серьезной критики в силу своей недолговечности. Подлинной революцией в стоматологии стало изготовление отдельных коронок, а также мостовидных и съемных протезов на базисе титана и тантала. Данные металлы, ввиду таких присущих им ценных качеств, как биологическая инертность и высокая прочность при относительной дешевизне успешно конкурируют с золотом и платиной, а по ряду параметров даже превосходят их.

Большой популярностью, в частности, пользуются штампованные и цельнолитые титановые коронки (рис. 19). А коронки с плазменным напылением из нитрида титана TiN по внешнему виду и функциональным свойствам практически неотличимы от золотых (рис. 19)

Цельнолитая титановая коронка и коронка с напылением из нитрида титана

Рисунок 19. Цельнолитая титановая коронка и коронка с напылением из нитрида титана.

Что же касается протезов, то они могут быть несъемными (мостовидными) для восстановления нескольких рядом стоящих зубов или съемными, используемыми при утрате всего зубного ряда (полная адентия челюсти). Наиболее распространенные протезы – бюгельные (от нем. der Bogen «дуга»).

Бюгельный протез выгодно отличает наличие металлического каркаса, на котором крепится базисная часть (рис. 20).

Бюгельный протез нижней челюсти

Рисунок 20. Бюгельный протез нижней челюсти.

Сегодня бюгельная часть протеза и кламмеры выполняются, как правило, из чистого медицинского титана высокой чистоты марки ТВЧ.

Подлинной революцией в стоматологии явилась становящаяся все более востребованной технология имплантационного зубного протезирования. Протезирование на имплантатах – самый надежный способ крепления ортопедических конструкций, которые в этом случае служат десятилетиями или даже пожизненно.

Дентальный (зубной) имплантат – служащая опорой для коронок, а также мостовидных и съемных протезов двусоставная конструкция, базовая часть которой (собственно имплантат) представляет собой конусный штифт с резьбой, ввинчиваемый непосредственно в кость челюсти. На верхнюю платформу имплантата устанавливается абатмент, служащий для фиксации коронки или протеза (рис. 21).

Зубной имплантат Nobel Biocare из чистого медицинского титана класса 4(G4Ti)

Рисунок 21. Зубной имплантат Nobel Biocare из чистого медицинского титана класса 4(G4Ti).

Чаще всего для изготовления винтовой части имплантата служит чистый медицинский титан с поверхностным тантал-ниобиевым напылением, способствующим активизации процесса остеоинтеграции – сращивания металла с живыми костными и десневыми тканями.

Однако некоторые производители предпочитают изготавливать не двусоставные, а цельные имплантаты, в которых винтовая часть и абатмент имеют не раздельную, а монолитную структуру. При этом, например, немецкая компания Zimmer производит цельные имплантаты из пористого тантала, который, в сравнении с титаном, обладает большей гибкостью и внедряется в ткань кости с практически нулевым риском осложнений (рис. 22).

Титановые и танталовые конструкции для остеосинтеза

Рисунок 22. Цельные зубные имплантаты Zimmer из пористого тантала.

Тантал, в отличие от титана – более тяжелый металл, поэтому пористая структура существенно облегчает изделие, не вызывая, к тому же, необходимости в дополнительном внешнем напылении остеоинтегрирующего покрытия.

Примеры имплантационного протезирования отдельных зубов (коронки) и путем установки на имплантаты съемных протезов показаны на рис. 23.

Примеры применения титано-танталовых имплантатов в зубном протезировании

Рисунок 23. Примеры применения титано-танталовых имплантатов в зубном протезировании.

Ныне, в добавление к уже существующим, разрабатываются все новые методики протезирования на имплантатах, показывающие высокую эффективность в различных клинических ситуациях.

Изготовление медицинского инструментария

Сегодня в мировой клинической практике используется сотни разновидностей различных хирургических и эндоскопических инструментов и медицинской аппаратуры, изготавливаемых с применением титана и тантала (ГОСТ 19126—79 «Инструменты медицинские металлические. Общие технические условия». Они выгодно отличаются от прочих аналогов по показателям прочности, пластичности и коррозиестойкости, обуславливающей биологическую инертность.

Титановые мединструменты по легкости почти вдвое превосходят стальные аналоги, являясь при этом более удобными и долговечными.

Хирургические инструменты, изготовленные на титано-танталовой основе

Рисунок 24. Хирургические инструменты, изготовленные на титано-танталовой основе.

Основными медицинскими отраслями, в которых более всего востребован титаново-танталовый инструментарий, являются офтальмологическая, стоматологическая, отоларингологическая и хирургическая. В составе обширной номенклатуры инструментов представлены сотни наименований шпателей, клипсов, расширителей, зеркал, зажимов, ножниц, щипцов, скальпелей, стерилизаторов, тубусов, долот, пинцетов, всевозможных пластин.

Биохимические и физикомеханические характеристики легких титановых инструментов имеют особую ценность для военно-полевой хирургии и различных экспедиций. Здесь они совершенно незаменимы, поскольку в экстремальных условиях буквально каждые 5-10 граммов лишнего груза являются существенной обузой, а устойчивость к коррозии и максимум надежности – обязательные требования.

Титан, тантал и их сплавы в виде монолитных изделий или тонких защитных покрытий активно применяют в медицинском приборостроении. Их используют при изготовлении дистилляторов, насосов для перекачки агрессивных сред, стерилизаторов, компонентов наркозо-дыхательной аппаратуры, сложнейших устройств для дублирования работы жизненно важных органов типа «искусственное сердце», «искусственное легкое», «искусственная почка» и др.

Титановые головки аппаратов для УЗИ имеют самый продолжительный эксплуатационный ресурс, при том, что аналоги из прочих материалов даже при нерегулярном воздействии ультразвуковых колебаний быстро приходят в негодность.

В дополнение к выше сказанному можно отметить, что титан, как и тантал, в отличие от многих других металлов, имеют способность к десорбированию («отталкиванию») излучения радиоактивных изотопов, в связи с чем активно применяются в производстве различных защитных устройств и радиологической аппаратуры.

Заключение

Разработка и производство изделий медицинского назначения – одно из наиболее интенсивно развивающихся направлений научно-технического прогресса. С началом третьего тысячелетия медицинская наука и техника вошли в число основных движущих сил современной мировой цивилизации.

Значение металлов в человеческой жизнедеятельности неуклонно возрастает. Революционные изменения происходят на фоне интенсивного развития научного материаловедения и практической металлургии. И вот уже в последние десятилетия «на щит истории» подняты такие промышленные металлы, как титан и тантал, которые со всеми на то основаниями можно назвать конструкционными материалами нового тысячелетия.

Значение титана в современном врачевании просто невозможно переоценить. Несмотря на относительно непродолжительную историю использования в практических целях, он стал одним из лидирующих материалов во множестве медицинских отраслей. Титан и его сплавы обладают для этого суммой всех необходимых характеристик: коррозиестойкостью (и, как следствие, биоинертностью), а также легкостью, прочностью, твёрдостью, жёсткостью, долговечностью, гальванической нейтральностью и т.д.

Не уступает титану в плане практической значимости и тантал. При общем сходстве большинства полезных свойств по некоторым качествам они уступают, а по некоторым – превосходят друг друга. Вот почему трудно, да и вряд ли разумно объективно судить о приоритетности какого-то одного из этих металлов для медицины: они, скорее, органично дополняют друг друга, чем конфликтуют между собой. Достаточно отметить, что ныне активно разрабатываются и находят реальное применение медицинские конструкции на основе титано-танталовых сплавов, объединяющих в себе все преимущества Ti и Та. И далеко не случайно в последние годы предпринимаются все более успешные попытки создания имплантируемых непосредственно в организм человека полноценных искусственных органов из титана, тантала и их соединений. Близится время, когда, скажем, понятия «титановое сердце» или «танталовые нервы» уверенно перейдут из разряда фигур речи в сугубо практическую плоскость.

"Метотехника"
e-mail: info@metotech.ru

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

Нихром :: Фехраль :: Нихром в изоляции :: Титан :: Вольфрам :: Молибден :: Кобальт :: Термопары :: Термопары нагревостойкие :: Никель :: Монель :: Константан :: Мельхиор :: Твердые сплавы :: Порошки металлов :: Нержавеющая сталь :: Жаропрочные сплавы :: Ферросплавы :: Олово :: Тантал :: Ниобий :: Ванадий :: Хром :: Рений :: Прецизионные сплавы :: Цирконий :: Обзор цен на металлы и ферросплавы :: Карта сайта
                     Яндекс цитирования