ПРОДУКЦИЯ

НИХРОМ

ФЕХРАЛЬ

НИХРОМ В ИЗОЛЯЦИИ

ТИТАН

ВОЛЬФРАМ

МОЛИБДЕН

КОБАЛЬТ

ТЕРМОПАРЫ

ТЕРМОПАРЫ НАГРЕВОСТОЙКИЕ

НИКЕЛЬ

МОНЕЛЬ

КОНСТАНТАН

МЕЛЬХИОР

ТВЕРДЫЕ СПЛАВЫ

ПОРОШКИ МЕТАЛЛОВ

НЕРЖАВЕЮЩАЯ СТАЛЬ

ЖАРОПРОЧНЫЕ СПЛАВЫ

ФЕРРОСПЛАВЫ

ОЛОВО

ТАНТАЛ

НИОБИЙ

ВАНАДИЙ

ХРОМ

РЕНИЙ

ПРЕЦИЗИОННЫЕ СПЛАВЫ

ЦИРКОНИЙ


 
Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.

 

8 (800) 200-52-75
(499) 166-78-38
(499) 166-78-74
(495) 504-95-54
(495) 642-41-95
logo
(800) 200-52-75
(499) 166-78-38
(499) 166-78-74
(495) 504-95-54

Сравнение жаростойких и коррозионностойких сталей и сплавов

В статье сравниваются коррозионностойкие (нержавеющие) стали и жаростойкие сплавы. Приведена классификация сталей и сплавов, описаны химический состав, свойства, области применения.

Коррозионностойкие и жаростойкие сплавы и стали используются при производстве ответственных деталей машин, аппаратов, приборов и технологического оборудования практически для всех отраслей промышленности. Главное общее свойство, присущее этим материалам – стойкость к разным видам коррозии в агрессивных средах и стабильность параметров при высоких температурах. Различаются они физико-механическими характеристиками, а также химическим составом, точнее, типом и объемом дополнительных химических элементов (легирующих добавок), введенных в базовую основу – железо или никель, которые и придают конечному материалу определенные качества.

Фланцы из коррозионностойкой стали

Классификация

Жаростойкие и коррозионностойкие стали и сплавы классифицируют по ГОСТ 5632-72 исходя из их ключевых физико-механических свойств.

Коррозионностойкие стали и сплавы отличаются способностью противостоять коррозионным процессам под воздействием широкого спектра естественных и искусственных коррозионных сред: атмосферной (в атмосфере воздуха, в условиях любого влажного газа), подводной, подземной (почвенной), щелочной, кислотной, солевой, под воздействием блуждающего тока и т.д. Окалиностойкие жаростойкие сплавы обладают долговременной стойкостью к химическому и электрохимическому разрушению (окислению) поверхности в агрессивных газообразных средах при температурах свыше 500-550°С, при работе без высоких нагрузок.

Легирование

Формирование специальных свойств коррозионно - и жаростойких сплавов и сталей производится способом легирования. Осуществляется легирование путем введения определенного количества хрома (Cr) и/или никеля (Ni) в расплав базового металла. У некоторых типов сталей и сплавов допускается наличие дополнительных легирующих, а также незначительного количества случайно попавших элементов, но никель и хром в их составе всегда имеет наибольшую массовую долю в соотношении к остальным примесям и добавкам.

Химический состав коррозионностойких сталей и сплавов

Наиболее распространенные коррозионностойкие стали и сплавы делятся на хромистые и хромоникелевые, в которых основным легирующим элементом выступает хром в соотношении не менее 10,5-13% от общей массы сплава, предназначенный для образования на его поверхности защитной оксидной пленки Cr2O3. Для стабилизации аустенитной структуры стали в нее добавляется никель (8-25%), для повышения прочности – углерод (0,1-2%), для увеличения стойкости к перепадам температур – титан (0,6-0,8%). В роли дополнительных легирующих элементов используют молибден, медь, ниобий, кремний, марганец и др. Аустенит – это одна из фаз состояния структуры кристаллической решетки стали и сплавов на основе железа с концентрацией углерода до 2%, обеспечивающая им максимальную стойкость к коррозии при высоких температурах. В большинстве сталей и сплавов кристаллическая решетка приобретает устойчивую (стабильную) аустенитную структуру только при нагреве до 727°С и выше. Формируется аустенитная структура путем введения в сплав определенных легирующих элементов (добавок), которые называют аустенизаторами. К числу аустенизаторов относят никель, кобальт, углерод, азот, медь и пр.

Бак из коррозионностойкой стали

Свойства коррозионностойких сталей и сплавов

Когда сплав обогащается хромом в объеме свыше 13%, то в сочетании с другими легирующими компонентами получается прочная нержавеющая сталь с повышенными коррозионно - и жаростойкими свойствами, а также с высокой устойчивостью к воздействию кислот и т.п. Например, коррозионностойкая сталь марки 08Х18Н10 может эксплуатироваться в средах средней агрессивности при температурах до 600°С. Жаростойкость сталей марки 36Х18Н25С2 и 15Х6СЮ достигает 800°С, марки 12Х17 – 900°С, а нержавеющая сталь марки 15Х25Т способна сохранять устойчивость к коррозии (окалиностойкость) при температуре в 1100°С (кратковременно).

Химический состав жаростойких сплавов

В отличие от коррозионностойких сталей, изготавливаемых на основе железа с легированием хромом и никелем, жаростойкие сплавы производятся на основе никеля. Именно большая массовая доля никеля (не менее 55%), температура плавления которого равна 1455°С, обеспечивает сплавам защиту от коррозии и физическую стабильность при работе в различных средах при очень высоких температурах. Чтобы увеличить и без того высокую жаропрочность сплава, никель легируется хромом (15-23%) и в незначительном объеме (1-5%) обогащается тугоплавкими металлами (кремний, молибден, титан, марганец, вольфрам, тантал, ниобий и др.) с температурой плавления выше 1700°С. Для экономии дорогостоящего никеля в состав некоторых марок сплава вводят железо (до 25%).

Свойства жаростойких сплавов

Одним из наиболее распространенных жаростойких сплавов на основе никеля является нихром, который по своим свойствам превосходит лучшие жаропрочные стали. В данном случае речь идет именно о жаростойкости (жаростойкость характеризует сопротивление металлов и сплавов газовой коррозии при высоких температурах) нихрома, которую не следует путать с жаропрочностью (жаропрочность - способность сталей и сплавов выдерживать механические нагрузки при высоких температурах в течение определенного времени). В отличие от коррозионностойкой нержавеющей стали, нихромы не имеют достаточной механической прочности, чтобы в течение продолжительного времени работать в нагруженном состоянии, из них нельзя штамповать или точить детали, зато они чрезвычайно жаростойки и пластичны, поэтому отлично подходят для производства большого спектра высокоэффективных нагревательных элементов.

К примеру, 60-процентная массовая доля никеля в составе нихрома марки ХН60Ю обеспечивает ему возможность длительной работы в агрессивной окислительной среде (в азоте, аммиаке и др.) при рабочей температуре до 1150°С, а температура плавления этого материала составляет 1390°С. В свою очередь рабочая температура нихрома марки Х20Н80 достигает 1250°С. Здесь следует заострить внимание на том, что никелевые жаростойкие сплавы чаще всего производят в виде полуфабрикатов - проволоки и ленты, поэтому рабочая температура детали из нихрома будет зависеть еще и от диаметра проволоки или сечения ленты.

Стоимость жаро- и коррозионностойких сталей и сплавов

Поскольку коррозионностойкие стали и жаростойкие сплавы в плане их применения имеют мало точек пересечения, т.к. каждый материал обладает своей специфической нишей, сравнивать стоимость материалов было бы не совсем корректно. И, тем не менее, для полноты и объективности данного обзора отметим, что килограмм обыкновенной коррозионностойкой стали аустенитного класса стоит в 20 раз дешевле килограмма жаростойкого сплава. Такое положение дел обусловлено дефицитом и высокой стоимостью никеля. Несмотря на это жаростойкие сплавы пользуются неизменным и стабильным спросом на рынке, оставаясь незаменимыми во многих сферах, тем более, что их ближайшие аналоги, например, кобальтовые сплавы, стоят еще дороже, причем настолько, что их используют только в исключительных случаях.

Области применения

Количество жаростойких изделий, для производства которых применяется коррозионностойкая нержавеющая сталь сложно перечислить в рамках одной статьи. В их числе элементы аппаратов и сосудов для кислот, щелочей и солевых растворов различной концентрации, арматура, теплообменники и трубы, предназначенные для работы в условиях слабоагрессивных сред, детали и корпуса пищевого и химического оборудования, печей, турбин, двигателей машин, самолетов. Разумеется, нержавеющая сталь незаменима при изготовлении посуды и медицинских биксов (стерилизационных емкостей).

Реактор для химической промышленности

Сфера использования сплавов на основе никеля (нихромов) обусловлена не только их уникальной коррозионной и жаростойкостью, устойчивостью к большому спектру химических воздействий (окислению), но и высокой пластичностью. Из нихромовой проволоки изготавливают нагревательные элементы для лабораторных и промышленных печей, реостатов, сушильных аппаратов, электротермического и кухонного оборудования (в том числе бытового), резисторы, нити электронных сигарет и многое другое.

"Метотехника" ®
e-mail: info@metotech.ru

телефоны:
8 (800) 200-52-75
(499) 166-78-38
(499) 166-78-74
(495) 504-95-54
(495) 642-41-95

Нихром :: Фехраль :: Нихром в изоляции :: Титан :: Вольфрам :: Молибден :: Кобальт :: Термопары :: Термопары нагревостойкие :: Никель :: Монель :: Константан :: Мельхиор :: Твердые сплавы :: Порошки металлов :: Нержавеющая сталь :: Жаропрочные сплавы :: Ферросплавы :: Олово :: Тантал :: Ниобий :: Ванадий :: Хром :: Рений :: Прецизионные сплавы :: Цирконий :: Обзор цен на металлы и ферросплавы :: Карта сайта
                     Яндекс цитирования
Метотехника® Все права защищены