ПРОДУКЦИЯ

НИХРОМ

ФЕХРАЛЬ

НИХРОМ В ИЗОЛЯЦИИ

ТИТАН

ВОЛЬФРАМ

МОЛИБДЕН

КОБАЛЬТ

ТЕРМОПАРЫ

ТЕРМОПАРЫ НАГРЕВОСТОЙКИЕ

НИКЕЛЬ

МОНЕЛЬ

КОНСТАНТАН

МЕЛЬХИОР

ТВЕРДЫЕ СПЛАВЫ

ПОРОШКИ МЕТАЛЛОВ

НЕРЖАВЕЮЩАЯ СТАЛЬ

ЖАРОПРОЧНЫЕ СПЛАВЫ

ФЕРРОСПЛАВЫ

ОЛОВО

ТАНТАЛ

НИОБИЙ

ВАНАДИЙ

ХРОМ

РЕНИЙ

ПРЕЦИЗИОННЫЕ СПЛАВЫ

ЦИРКОНИЙ


 
Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.

 

8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95
logo
(800) 200-52-75
(495) 366-00-24
(495) 504-95-54

Карбиды и их применение в промышленных целях

В статье рассматриваются карбиды различных металлов. Приведена классификация карбидов, описан их химический состав, марки, свойства и области применения.

Карбиды (от лат. carbo – уголь) – химические вещества, образуемые путем соединения с углеродом ряда металлов или таких неметаллических элементов таблицы Менделеева, как бор (B) и кремний (Si). Важнейшими физико-химическими свойствами карбидов являются твердость, способность противостоять механическим деформациям и тугоплавкость. Так, например, карбид вольфрама (WC), карбид тантала (TaC), карбид титана (TiC), карбид молибдена (MoC), карбид циркония (ZrC), а также карбид бора (B4C) и карбид кремния (SiC) не подвержены разложению даже при белом калении и нейтральны в химическом отношении, имеют степень твердости, близкую к твердости алмазов.

Фрезы из карбида вольфрама

Рисунок 1. Фрезы из карбида вольфрама

Карбиды – вещества нелетучие и не растворяющиеся в самых агрессивных растворителях, включая “царскую водку” (смесь серной и соляной кислот). Их получают как непосредственно из чистых элементов, так и с применением метода восстановления оксидов углеродом. Промышленные партии карбидов выпускаются в виде порошков (спеченные карбиды) и специальных отливок (литые карбиды).

Классификация по группам

Согласно современной классификации карбиды, исходя из особенностей межатомной связи в молекулярной решетке, подразделяют на 3 группы, существенно различающиеся по набору функциональных характеристик.

В состав 1-й группы входят так называемые карбиды солеобразного типа с ионной связью. Их основой служат щелочные и щелочноземельные металлы, алюминий, редкоземельные элементы, а также актиниды – торий (Th), уран (U), плутоний (Pu) и другие. Многие из таких карбидов вступают с Н2О и кислотами в бурную реакцию и начинают разлагаться с обильным выделением газообразной фракции в виде метана (метаниды) или ацетилена (ацетилениды) и осаждением металлических гидроксидов. Карбиды данной группы используют для управления химическими реакциями как раскислители, восстановители, катализаторы и т.д. Наиболее востребованными метанидами являются карбиды магния (MgС2, Mg2C), алюминия (Al4C3) и бериллия (Be2C). Среди ацителенидов самым известным считается карбид кальция CaC2, широко используемый в газосварочных технологиях.

Ко 2-й группе причисляют ряд карбидов, именуемых металлоподобными. Их образуют в связке с углеродом переходные металлы IV–VII гр. Периодической таблицы Д.И. Менделева, а также кобальт, железо и никель. Карбиды металлоподобной группы, помимо твердости и тугоплавкости, имеют высокие показатели электропроводности и устойчивости к воздействию химически активных реагентов. Вот почему, в частности, карбиды железа (Fe3C), хрома (Cr3C2), молибдена (MoC) востребованы для цементации чугунных и стальных поверхностей, а карбиды вольфрама (WC), титана (TiC), тантала (TaC), ванадия (VC) – для производства твердых сплавов, для изготовления полупроводниковых диодов, различных жаростойких покрытий, рабочих кромок металлорежущего инструмента и породоразрушающего оборудования.

3-ю группу составляют так называемые ковалентные карбиды кремния (SiC) и бора (B4C, B12C3), отличающиеся высочайшей твердостью и используемые для выпуска сверхтвердых сплавов, не уступающих по твердости корундам. Из них также производят абразивы для шлифовки и полировки поверхностей металлических изделий, огнеупоры и нагревательные элементы для высокотемпературных производственных процессов.

Карбиды тугоплавких металлов в производстве твердосплавных материалов

И все же самой обширной сферой применения является использование карбидов тугоплавких металлов для изготовления металлокерамических сплавов.

К категории твердых сплавов относят ряд износостойких металломатериалов на основе карбидов WC, TiC, VC, TaC, NbC, CrC и других металлов, имеющих Т° плавления от 860 до 1320°C, прочность связи которых в молекулярной структуре обеспечивают включения более мягких кобальта, никеля, железа с гораздо меньшей температурой плавления. Сплав становится менее хрупким и более упругим и пластичным, чем выше в нем процентное содержание связующего включения.

Для регламентации химического состава и эксплуатационных параметров твердых сплавов служат, в частности, ТУ 48-19-60-78, ТУ 48-19-154-92 и прочие нормативные документы.

По технологическому критерию твердые сплавы подразделяют на спеченные (металлокерамику) и литые (наплавляемые).

Изготовление спеченных твердых сплавов осуществляется методом порошковой металлургии. Техпроцесс включает в себя три последовательных этапа.

  1. Сначала в определенных соотношениях тщательно смешиваются дисперсные порошки тугоплавких металлов и металлов-связок (кобальтовый порошок, никелевый порошок и др.), а по мере необходимости – также порошков легирующих добавок.
  2. Затем готовую смесь подвергают прессованию под высоким давлением (1250-4550 кгс/см2 и выше).
  3. На заключительном этапе производится спекание получаемого полуфабриката в специальной электропечи в температурном режиме, близком к Т плавления металлического связующего, до тех пор, пока не будет сформирован сплав, имеющий показатель твердости не ниже HRA = 86 и термостойкости до 1320°C.

Твердые сплавы практически не поддаются традиционным способам механической обработки (резание, давление, строгание, шлифовка и др.). С этой целью применяют такие современные методы, как лазерное/ультразвуковое шлифование либо кислотное травление.

Производство литых твердых сплавов базируется на таких технологических методах, как плавка и литье. Их применяют для наплавления защитного покрытия на быстроизнашиваемые поверхности и, сообразно химическому составу, подразделяют на 3 типа.

К первому типу относят релит – композицию вольфрамовых карбидов (WC и W2C), характеризуемую особенно высокими значениями показателей твердости и стойкости к износу. Т° плавления релита составляет 3520°C, что также является ценным критерием.

К группе релитов относятся:

  • литые карбиды вольфрама зерновые марок ЛКВ-«З» (ТУ У24.6-33876998-001-2006);
  • карбиды вольфрама сферические марок КВС (ТУ У24.1-19482355-001:2010;
  • ленточные релиты марок ЛЗ, ЛС, ЛСЗ (ТУ У28.7-19482355-002:2014).

Ко второму типу причисляют стеллиты – литые сплавы, являющие собой карбидную композицию W-Co-Cr. Им присуща более низкая, чем у релита, Т° плавления (близкая к Т° плавления сталей) на фоне, стойкости к износу и коррозии – качеств, обусловленных высокой твердостью. Изготавливаются в виде прутков. В России выпускаются стеллиты марок ПР-В3К и ПР-В3К-Р (ГОСТ 21449-75).

Третий тип литых твердосплавных материалов представлен сормайтами – соединениями композиции Fe-Cr-Mn-Ni, имеющие более низкую твердость и Т° плавления в сравнении со стеллитами. Отечественная промышленность производит прутки сормайта марки Пр-С (ГОСТ 21449-75). Сормайт бывает 2-х типов: сормайт №1 и сормайт №2, характеризующийся способностью подвергаться термообработке, а также более высокими характеристиками прочности и вязкости по сравнению с сормайтом №1. Торцевые оконечности прутков сормайта №1 окрашивают в зеленый цвет, а сормайта №2 – в красный.

Применение твердых сплавов в промышленных целях

В настоящее время трудно представить себе промышленную отрасль, в которой не использовались бы твердосплавные материалы на основе карбидов тугоплавких металлов и связующих металлокомпонентов.

Карбидо-содержащие сплавы необходимы, в частности, для:

  • производства металлорежущего и породоразрушающего инструмента в металлообрабатывающей и горнодобывающей отраслях;
  • изготовления штамповочного оборудования;
  • изготовления хирургических инструментов;
  • обустройства точных поверхностей в различном измерительном инструментарии;
  • маркирования рабочей поверхности клейм;
  • производства рабочих элементов подшипников качения;
  • других целей, когда использование твердосплавных материалов является целесообразным либо вовсе не имеет альтернатив.

Промышленная значимость карбидов в развитии технического прогресса побуждает исследователей и инженеров-практиков к созданию все новых продуктов на их основе. Так, сегодня особенно пристальное внимание уделяется разработке новейших типов карбидо-содержащих твердосплавных материалов с широким спектром полезных свойств для авиакосмической, судостроительной, радиоэлектронной отраслей и ядерной энергетики.

"Метотехника" ®
e-mail: info@metotech.ru

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

Нихром :: Фехраль :: Нихром в изоляции :: Титан :: Вольфрам :: Молибден :: Кобальт :: Термопары :: Термопары нагревостойкие :: Никель :: Монель :: Константан :: Мельхиор :: Твердые сплавы :: Порошки металлов :: Нержавеющая сталь :: Жаропрочные сплавы :: Ферросплавы :: Олово :: Тантал :: Ниобий :: Ванадий :: Хром :: Рений :: Прецизионные сплавы :: Цирконий :: Обзор цен на металлы и ферросплавы :: Карта сайта
                     Яндекс цитирования
Метотехника® Все права защищены